Your browser doesn't support javascript.
loading
Lithium/Boron Co-doped Micrometer SiOx as Promising Anode Materials for High-Energy-Density Li-Ion Batteries.
Li, Xiao-Dong; Zhao, Yu-Ming; Tian, Yi-Fan; Lu, Zhuo-Ya; Fan, Min; Zhang, Xu-Sheng; Tian, He; Xu, Quan; Li, Hong-Liang; Guo, Yu-Guo.
Afiliação
  • Li XD; College of Materials Science and Engineering, State Key Laboratory of Biopolysaccharide Fiber Forming and Eco-Textile, Qingdao University, Qingdao 266071, P. R. China.
  • Zhao YM; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Tian YF; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Lu ZY; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Fan M; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Zhang XS; Beijing IAmetal New Energy Technology Co., Ltd., Beijing 100190, P. R. China.
  • Tian H; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Xu Q; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
  • Li HL; CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
  • Guo YG; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Appl Mater Interfaces ; 14(24): 27854-27860, 2022 Jun 22.
Article em En | MEDLINE | ID: mdl-35678306
ABSTRACT
The carbon-coated silicon monoxide (SiOx@C) has been considered as one of the most promising high-capacity anodes for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the relatively low initial Coulombic efficiency (ICE) and the still existing huge volume expansion during repeated lithiation/delithiation cycling remain the greatest challenges to its practical application. Here, we developed a lithium and boron (Li/B) co-doping strategy to efficiently enhance the ICE and alleviate the volume expansion or pulverization of SiOx@C anodes. The in situ generated Li silicates (LixSiOy) by Li doping will reduce the active Li loss during the initial cycling and enhance the ICE of SiOx@C anodes. Meanwhile, B doping works to promote the Li+ diffusion and strengthen the internal bonding networks within SiOx@C, enhancing its resistance to cracking and pulverization during cycling. As a result, the enhanced ICE (83.28%), suppressed volume expansion, and greatly improved cycling (85.4% capacity retention after 200 cycles) and rate performance could be achieved for the Li/B co-doped SiOx@C (Li/B-SiOx@C) anodes. Especially, the Li/B-SiOx@C and graphite composite anodes with a capacity of 531.5 mA h g-1 were demonstrated to show an ICE of 90.1% and superior cycling stability (90.1% capacity retention after 250 cycles), which is significant for the practical application of high-energy-density LIBs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article