Your browser doesn't support javascript.
loading
Effects of Luteolin on Human Breast Cancer Using Gene Expression Array: Inferring Novel Genes.
Wang, Shih-Ho; Wu, Chin-Hu; Tsai, Chin-Chuan; Chen, Tai-Yu; Tsai, Kuen-Jang; Hung, Chao-Ming; Hsu, Chia-Yi; Wu, Chia-Wei; Hsieh, Tsung-Hua.
Afiliação
  • Wang SH; Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
  • Wu CH; Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
  • Tsai CC; Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
  • Chen TY; Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan.
  • Tsai KJ; Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan.
  • Hung CM; Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
  • Hsu CY; Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
  • Wu CW; Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
  • Hsieh TH; Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
Curr Issues Mol Biol ; 44(5): 2107-2121, 2022 May 09.
Article em En | MEDLINE | ID: mdl-35678671
ABSTRACT
Taraxacum officinale (dandelion) is often used in traditional Chinese medicine for the treatment of cancer; however, the downstream regulatory genes and signaling pathways mediating its effects on breast cancer remain unclear. The present study aimed to explore the effects of luteolin, the main biologically active compound of T. officinale, on gene expression profiles in MDA-MB-231 and MCF-7 breast cancer cells. The results revealed that luteolin effectively inhibited the proliferation and motility of the MDA-MB-231 and MCF-7 cells. The mRNA expression profiles were determined using gene expression array analysis and analyzed using a bioinformatics approach. A total of 41 differentially expressed genes (DEGs) were found in the luteolin-treated MDA-MB-231 and MCF-7 cells. A Gene Ontology analysis revealed that the DEGs, including AP2B1, APP, GPNMB and DLST, mainly functioned as oncogenes. The human protein atlas database also found that AP2B1, APP, GPNMB and DLST were highly expressed in breast cancer and that AP2B1 (cut-off value, 75%) was significantly associated with survival rate (p = 0.044). In addition, a Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were involved in T-cell leukemia virus 1 infection and differentiation. On the whole, the findings of the present study provide a scientific basis that may be used to evaluate the potential benefits of luteolin in human breast cancer. Further studies are required, however, to fully elucidate the role of the related molecular pathways.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article