Your browser doesn't support javascript.
loading
Identification and structural analysis of novel malathion-specific DNA aptameric sensors designed for food testing.
Kadam, Ulhas Sopanrao; Trinh, Kien Hong; Kumar, Vikas; Lee, Keun Woo; Cho, Yuhan; Can, Mai-Huong Thi; Lee, Hyebi; Kim, Yujeong; Kim, Sundong; Kang, Jaehee; Kim, Jae-Yean; Chung, Woo Sik; Hong, Jong Chan.
Afiliação
  • Kadam US; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Trinh KH; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Faculty of Biotechnology, Vietnam National University of Agriculture, 12400, Hanoi, Viet Nam.
  • Kumar V; Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea.
  • Lee KW; Department of Bio and Medical Big Data (BK21 Four), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, 52828, Gyeongnam, South Korea.
  • Cho Y; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Can MT; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Lee H; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Kim Y; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Kim S; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Kang J; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Kim JY; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Chung WS; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea.
  • Hong JC; Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA. Electronic address
Biomaterials ; 287: 121617, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35728408
Malathion is an organophosphate chemical (OPC) and a toxic contaminant that adversely impacts food quality, human health, biodiversity, and the environment. Due to its small size and unavailability of sensitive sensors, detection of malathion remains a challenging task. Often chromatographic methods employed to analyze OPCs suffer from several shortcomings, including cost, immobility, laboriousness, and unsuitability for point-of-care settings. Hence, developing a specific and sensitive diagnostic sensor for quick and inexpensive food testing is essential. We discovered four unique malathion-specific ssDNA aptamers; designed two independent sensing strategies using fluorescence labeling and Thioflavin T (ThT) displacement. Selected aptamers formed the G4-quadruplex-like (G4Q) structure, which helped develop a label-free detection approach with a 2.01 ppb limit of detection. Additionally, 3D structures of aptamers were generated and validated using a series of computational modeling programs. Furthermore, we explored structural features using CD spectroscopy and molecular docking, probing ligands' binding mode, and revealed vital intermolecular interactions with aptamers. Subsequently, the novel sensors were optimized to detect malathion from food samples. The novel sensors could be further developed to meet the demands of sensing and quantifying toxic contaminants from real food samples in field conditions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article