Your browser doesn't support javascript.
loading
Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity.
Lehman, Stacey L; Wechsler, Theresa; Schwartz, Kayla; Brown, Lauren E; Porco, John A; Devine, William G; Pelletier, Jerry; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J.
Afiliação
  • Lehman SL; Radation Oncology Branch, NCI, Bethesda, Maryland.
  • Wechsler T; Radation Oncology Branch, NCI, Bethesda, Maryland.
  • Schwartz K; Radation Oncology Branch, NCI, Bethesda, Maryland.
  • Brown LE; Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts.
  • Porco JA; Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts.
  • Devine WG; Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts.
  • Pelletier J; Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.
  • Shankavaram UT; Radation Oncology Branch, NCI, Bethesda, Maryland.
  • Camphausen K; Radation Oncology Branch, NCI, Bethesda, Maryland.
  • Tofilon PJ; Radation Oncology Branch, NCI, Bethesda, Maryland.
Mol Cancer Ther ; 21(9): 1406-1414, 2022 09 06.
Article em En | MEDLINE | ID: mdl-35732578
ABSTRACT
A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1-021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1-021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1-021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1-021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1-021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1-021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1-021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1-021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tolerância a Radiação / Fator de Iniciação 4F em Eucariotos / Neoplasias Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tolerância a Radiação / Fator de Iniciação 4F em Eucariotos / Neoplasias Idioma: En Ano de publicação: 2022 Tipo de documento: Article