Your browser doesn't support javascript.
loading
Effect-directed analysis for revealing aryl hydrocarbon receptor agonists in sediment samples from an electronic waste recycling town in China.
Ma, Qianchi; Liu, Yanna; Yang, Xiaoxi; Guo, Yunhe; Xiang, Tongtong; Wang, Yi; Yan, Yuhao; Li, Danyang; Nie, Tong; Li, Zikang; Qu, Guangbo; Jiang, Guibin.
Afiliação
  • Ma Q; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu Y; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address: ynliu@rcees.ac.cn.
  • Yang X; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Guo Y; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Scienc
  • Xiang T; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
  • Wang Y; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310
  • Yan Y; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li D; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Nie T; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
  • Li Z; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Qu G; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310
  • Jiang G; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310
Environ Pollut ; 308: 119659, 2022 Sep 01.
Article em En | MEDLINE | ID: mdl-35738515
ABSTRACT
Exposure to electronic and electrical waste (e-waste) has been related to a few adverse health effects. In this study, sediment samples from an e-waste recycling town in China were collected, and aryl hydrocarbon receptor (AhR) agonists in the samples were identified using an effect-directed analysis (EDA) strategy. The CBG2.8D cell line reporter gene bioassay was used as a toxicity test, while suspect screening against chemical databases was performed for potential AhR agonist identification where both gas chromatography- and liquid chromatography-high resolution mass spectrometry analyses were run. When the original sample extract showed high AhR-mediated activity, sample fractionation was performed, and fractions exhibiting high bioactivity were chemically analyzed again to reveal the corresponding AhR agonists. In total, 23 AhR agonists were identified, including 14 commonly known ones and 9 new ones. Benzo [k]fluoranthene and 6-nitrochrysene were the dominant AhR agonists, covering 16-71% and 2.7-12%, respectively, of the AhR activation effects measured in the parent extracts. The newly identified AhR-active chemicals combined explained 0.13-0.20% of the parent extracts' effects, with 7,12-dimethylbenz [a]anthracene and 8,9,11-trimethylbenz [a]anthracene being the major contributors. A diagnostic isomer ratio analysis of polycyclic aromatic hydrocarbons suggested that the major source of AhR agonists identified in these e-waste related sediment samples were probably petroleum product combustion and biomass combustion. In the future, for a more comprehensive AhR agonist investigation, in-house chemical synthesis and purification, and, when necessary, a secondary sample fractionation, would be beneficial.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Resíduo Eletrônico Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Resíduo Eletrônico Idioma: En Ano de publicação: 2022 Tipo de documento: Article