A systematic review of the application of machine-learning algorithms in multiple sclerosis.
Neurologia (Engl Ed)
; 38(8): 577-590, 2023 Oct.
Article
em En
| MEDLINE
| ID: mdl-35843587
INTRODUCTION: The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE: We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS: We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS: After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Esclerose Múltipla
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article