Your browser doesn't support javascript.
loading
Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment.
Chiou, Yi-Ru; Lin, Chin-Jung; Harroun, Scott G; Chen, Yi-Ru; Chang, Lung; Wu, An-Tai; Chang, Fu-Chieh; Lin, Yang-Wei; Lin, Han-Jia; Anand, Anisha; Unnikrishnan, Binesh; Nain, Amit; Huang, Chih-Ching.
Afiliação
  • Chiou YR; Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058, Taiwan.
  • Lin CJ; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan. huanging@ntou.edu.
  • Harroun SG; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
  • Chen YR; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan. huanging@ntou.edu.
  • Chang L; Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan.
  • Wu AT; Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan. antai@cc.ncue.edu.tw.
  • Chang FC; Department of Pediatrics, Mackay Memorial Hospital and Mackay, Junior College of Medicine Nursing and Management, Taipei 10449, Taiwan.
  • Lin YW; Nursing and Management, Mackay Junior College of Medicine, Taipei 11260, Taiwan.
  • Lin HJ; Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan. antai@cc.ncue.edu.tw.
  • Anand A; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan. huanging@ntou.edu.
  • Unnikrishnan B; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan. huanging@ntou.edu.
  • Nain A; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan. huanging@ntou.edu.
  • Huang CC; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
Nanoscale ; 14(32): 11719-11730, 2022 Aug 18.
Article em En | MEDLINE | ID: mdl-35913451
Bacteremia and associated bacterial sepsis are potentially fatal and occur when the host response to microbial invasion is impaired or compromised. This motivated us to develop carbonized polymer dots (CPDsMan/AA) from a mixture of mannose (Man) and positively charged amino acids [AAs; lysine, arginine (Arg), or histidine] through a one-step mild pyrolysis procedure, which effectively inhibited drug-resistant bacterial strains isolated from septic patients. The as-prepared CPDsMan/AA showed broad-spectrum antibacterial activity, including multidrug-resistant bacteria, even in human plasma. The minimal inhibitory concentration of CPDsMan/Arg is ca. 1.0 µg mL-1, which is comparable to or lower than those of other tested antibiotics (e.g., ampicillin, gentamicin, and vancomycin). In addition to directly disrupting bacterial membranes, the CPDsMan/Arg feature a structure similar to aminoglycoside antibiotics that could bind to 16S rRNA, thereby blocking bacterial protein synthesis. In vitro cytotoxic and hemolytic assays demonstrated the high biocompatibility of the CPDsMan/AA. In addition, in vivo studies on methicillin-resistant Staphylococcus aureus-infected mice treated with the CPDsMan/Arg showed a significant decrease in mortality-even better than that of antibiotics. Overall, the synthesis of the CPDsMan/AA is cost-efficient, straightforward, and effective for treating bacteremia. The polymeric features of the CPDsMan/Arg, including cationic charges and specific groups, can be recognized as a safe and broad-spectrum biocide to lessen our reliance on antibiotics to treat systemic bacterial infections in the future.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacteriemia / Staphylococcus aureus Resistente à Meticilina Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacteriemia / Staphylococcus aureus Resistente à Meticilina Idioma: En Ano de publicação: 2022 Tipo de documento: Article