Your browser doesn't support javascript.
loading
Tin-loaded mesoporous silica nanoparticles: Antineoplastic properties and genotoxicity assessment.
Choudante, Pallavi C; Nethi, Susheel Kumar; Díaz-García, Diana; Prashar, Sanjiv; Misra, Sunil; Gómez-Ruiz, Santiago; Patra, Chitta Ranjan.
Afiliação
  • Choudante PC; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
  • Nethi SK; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
  • Díaz-García D; COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
  • Prashar S; COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain.
  • Misra S; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address: smisra@iict.res.in.
  • Gómez-Ruiz S; COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain. Electronic address: santiago.gomez@urjc.es.
  • Patra CR; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address: crpatra@iict.res.in.
Biomater Adv ; 137: 212819, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35929256
ABSTRACT
Nanotechnology has immensely advanced the field of cancer diagnostics and treatment by introducing potential delivery vehicles as carriers for drugs or therapeutic agents. In due course, mesoporous silica nanoparticles (MSNs) have emerged as excellent vehicles for delivering drugs, biomolecules, and biomaterials, attributed to their solid framework and porosity providing a higher surface area for decorating with various functional ligands. Recently, the metal tin (Sn) has gained huge importance in cancer research owing to its excellent cytotoxicity and ability to kill cancer cells. In the present work, we synthesized MSNs, conjugated them with organotin compounds, and characterized them using various physicochemical techniques. Subsequently, the biological evaluation of MSN (S1), MSN-MP (S2) and tin-conjugated MSNs (S3 MSN-MP-SnPh3) (MP = 3-mercaptopropyltriethoxysilane) revealed that these nanoconjugates induced cytotoxicity, necrosis, and apoptosis in MCF-7 cells. Moreover, these nanoconjugates exhibited anti-angiogenic properties as demonstrated in the chick embryo model. The increase of reactive oxygen species (ROS) was found as a one of the plausible mechanisms underlying cancer cell cytotoxicity induced by these nanoconjugates, encouraging their application for the treatment of cancer. The tin-conjugated MSNs demonstrated less toxicity to normal cells compared to cancer cells. Furthermore, the genotoxicity studies revealed the clastogenic and aneugenic effects of these nanoconjugates in CHO cells mostly at high concentrations. These interesting observations are behind the idea of developing tin-conjugated MSNs as prospective candidates for anticancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estanho / Dióxido de Silício / Antineoplásicos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estanho / Dióxido de Silício / Antineoplásicos Idioma: En Ano de publicação: 2022 Tipo de documento: Article