Your browser doesn't support javascript.
loading
Application of sludge biochar nanomaterials in Fenton-like processes: Degradation of organic pollutants, sediment remediation, sludge dewatering.
Li, Sai; Huang, Danlian; Cheng, Min; Wei, Zhen; Du, Li; Wang, Guangfu; Chen, Sha; Lei, Lei; Chen, Yashi; Li, Ruijin.
Afiliação
  • Li S; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Huang D; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China. Electronic address: huangdanlian@hnu.edu.cn.
  • Cheng M; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China. Electronic address: chengmin@hnu.edu.cn.
  • Wei Z; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Du L; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Wang G; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Chen S; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Lei L; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Chen Y; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
  • Li R; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
Chemosphere ; 307(Pt 3): 135873, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35932922
ABSTRACT
In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas / Poluentes Ambientais Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas / Poluentes Ambientais Idioma: En Ano de publicação: 2022 Tipo de documento: Article