Your browser doesn't support javascript.
loading
Correlates of cancer prevalence across census tracts in the United States: A Bayesian machine learning approach.
Niu, Li; Hu, Liangyuan; Li, Yan; Liu, Bian.
Afiliação
  • Niu L; Faculty of Psychology, Beijing Normal University, Beijing, China; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Hu L; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
  • Li Y; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Liu B; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address: bian.liu@mountsinai.org.
Spat Spatiotemporal Epidemiol ; 42: 100522, 2022 08.
Article em En | MEDLINE | ID: mdl-35934328
Preventive measures, health behaviors, environmental exposures, and sociodemographic characteristics affect individual-level cancer risks. It is unclear how they influence neighborhood-level cancer risks. We developed a large-scale neighborhood health dataset for 72,337 census tracts in the United States by combining data from three publicly available sources. We used Bayesian additive regression trees to identify the most important predictors of tract-level cancer prevalence among adults (age ≥18 years), and examined their impact on cancer prevalence using partial dependence plots. The five most important census tract-level correlates of cancer prevalence were the proportion of population who were aged 65 years and older, had routine checkup and were non-Hispanic White, the proportion of houses built before 1960, and the proportion of population living below the poverty line. The identified predictors of neighborhood-level cancer prevalence may inform public health practitioners and policymakers to prioritize the improvement of environmental and neighborhood factors in reducing the cancer burden.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Setor Censitário / Neoplasias Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Setor Censitário / Neoplasias Idioma: En Ano de publicação: 2022 Tipo de documento: Article