Your browser doesn't support javascript.
loading
Passive Macromolecular Translocation Mechanism through Lipid Membranes.
Kostyurina, Ekaterina; Allgaier, Jürgen; Kruteva, Margarita; Frielinghaus, Henrich; Csiszár, Agnes; Förster, Stephan; Biehl, Ralf.
Afiliação
  • Kostyurina E; Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Allgaier J; Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Kruteva M; Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Frielinghaus H; Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, 85747 Garching, Germany.
  • Csiszár A; Institute for Biological Information Processing (IBI-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Förster S; Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
  • Biehl R; Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, 85747 Garching, Germany.
J Am Chem Soc ; 144(33): 15348-15354, 2022 08 24.
Article em En | MEDLINE | ID: mdl-35951721
ABSTRACT
The translocation of biologically active macromolecules through cell membranes is of vital importance for cells and is a key process for drug delivery. Proteins exploit specific conformational changes in their secondary structure to facilitate membrane translocation. For the large class of biological and synthetic macromolecules, where such conformational adaptions are not possible, guidelines to tailor the structure of monomers and macromolecules to aid membrane translocation and cross-membrane drug delivery would be highly desirable. Here, we use alternating amphiphilic macromolecules to systematically investigate the relation between polarity, polymer chain length, lipid chain length, polymer concentration, and temperature on membrane partition and translocation rate. We employed pulse field gradient NMR and confocal fluorescence microscopy to determine membrane adsorption and desorption rate constants and partitioning coefficients. We find that translocation is a two-step process involving a fast adsorption and membrane insertion process and a slower desorption process. Membrane insertion is a key step that determines the molecular weight, concentration, and temperature dependences. Passive translocation is possible on time scales from minutes to hours. Macromolecules with different adapted hydrophilic/hydrophobic comonomer sequences show the same translocation rate, indicating that common optimized translocation conditions can be realized with a variety of monomer chemical structures. The investigated copolymers are biocompatible, biodegradable, and capable of transporting a hydrophobic payload through the lipid membrane. This detailed understanding of the macromolecular translocation mechanism enables to better tailor the delivery of active agents using macromolecular carriers.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Bicamadas Lipídicas Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Bicamadas Lipídicas Idioma: En Ano de publicação: 2022 Tipo de documento: Article