Your browser doesn't support javascript.
loading
Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy.
Li, Meirong; Ling, Lan.
Afiliação
  • Li M; State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
  • Ling L; State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
ACS Nano ; 16(10): 15503-15511, 2022 Oct 25.
Article em En | MEDLINE | ID: mdl-35969015
ABSTRACT
Visualizing the structure and processes in liquids at the nanoscale is essential for understanding the fundamental mechanisms and underlying processes of environmental research. Cutting-edge progress of in situ liquid-phase (scanning) transmission electron microscopy (LP-S/TEM) and inferred possible applications are highlighted as a more and more indispensable tool for visualization of dynamic environmental processes in this Perspective. Advancements in nanofabrication technology, high-speed imaging, comprehensive detectors, and spectroscopy analysis have made it increasingly convenient to use LP S/TEM, thus providing an approach for visualization of direct and insightful scientific information with the exciting possibility of solving an increasing number of tricky environmental problems. This includes evaluating the transformation fate and path of contamination, assessing toxicology of nanomaterials, simulating solid surface corrosion processes in the environment, and observing water pollution control processes. Distinct nanoscale or even atomic understanding of the reaction would provide dependable and precise identification and quantification of contaminants in dynamic processes, thus facilitating trouble-tracing of environmental problems with amplifying complexity.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article