Your browser doesn't support javascript.
loading
Discovery of a novel jellyfish venom metalloproteinase inhibitor from secondary metabolites isolated from jellyfish-derived fungus Aspergillus versicolor SmT07.
Yue, Yang; Yu, Huahua; Suo, Qishan; Li, Rongfeng; Liu, Song; Xing, Ronge; Zhang, Quanbin; Li, Pengcheng.
Afiliação
  • Yue Y; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Tec
  • Yu H; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot Qingdao National Laboratory for Marine Science and T
  • Suo Q; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Tec
  • Li R; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot Qingdao National Laboratory for Marine Science and T
  • Liu S; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot Qingdao National Laboratory for Marine Science and T
  • Xing R; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot Qingdao National Laboratory for Marine Science and T
  • Zhang Q; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Tec
  • Li P; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot Qingdao National Laboratory for Marine Science and T
Chem Biol Interact ; 365: 110113, 2022 Sep 25.
Article em En | MEDLINE | ID: mdl-35987279
ABSTRACT
The major jellyfish stings that occur in China are caused by scyphozoan Nemopilema nomurai, whose venom exhibits significant metalloproteinase activity that contributes to the toxic effects of jellyfish envenomation. Researching effective inhibitors suppressing the metalloproteinase activity of jellyfish venom represents a new attempt to cure jellyfish envenomations. In the present study, secondary metabolites produced by the jellyfish-associated fungus Aspergillus versicolor SmT07 were isolated and evaluated for their anti-proteolytic activities. Two xanthones, sterigmatocystin (JC-01) and oxisterigmatocystin C (JC-06), and four alkaloids, cottoquinazoline A (JC-02), phenazine-1-carboxylic acid (JC-03), viridicatin (JC-04) and viridicatol (JC-05), were isolated and identified. Only phenazine-1-carboxylic acid (PCA) showed significant anti-proteolytic activity of jellyfish venom assayed on azocasein, and the IC50 value was 2.16 mM. PCA also significantly inhibited fibrinogenolytic activity, protecting the Bß chain of fibrinogen from degradation when preincubated with jellyfish venom at a ratio of >10.6 (PCAvenom, w/w). Molecular docking with several well-characterized snake venom metalloproteinases suggested the venom metalloproteinases inhibitory property of PCA by forming complex interactions with the active site via hydrogen bonds, π-π stacking and salt bridges, which was distinct from the binding mode of batimastat. The present study represents the first study identifying natural jellyfish venom metalloproteinase inhibitors from marine natural products, which may provide an alternative to develop therapeutic agents for treating jellyfish envenomations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Cnidários / Cifozoários Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Cnidários / Cifozoários Idioma: En Ano de publicação: 2022 Tipo de documento: Article