Your browser doesn't support javascript.
loading
Shell-Isolated Nanoparticle-Enhanced Electrochemiluminescence.
Lin, Long-Hui; Wang, Jing-Yu; You, Chao-Yu; Qiu, Ling-Hang; Lin, Jia-Sheng; Zhang, Fan-Li; Yang, Zhi-Lin; Zhang, Yue-Jiao; Chen, Xi; Li, Jian-Feng.
Afiliação
  • Lin LH; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Wang JY; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • You CY; Intelligent Wearable Engineering Research Center of Qingdao, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266003, China.
  • Qiu LH; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Lin JS; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Zhang FL; College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
  • Yang ZL; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Zhang YJ; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Chen X; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
  • Li JF; State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, iChEM, Department of Physics, State Key Laboratory of Marine Environmental Science, Xiamen University, X
Small ; 18(39): e2203513, 2022 09.
Article em En | MEDLINE | ID: mdl-36008122
Enhanced electrochemiluminescence (ECL) aims to promote higher sensitivity and obtain better detection limit. The core-shell nanostructures, owing to unique surface plasmon resonance (SPR) enabling distance-dependent strong localized electromagnetic field, have attracted rising attention in enhanced ECL research and application. However, the present structures usually with porous shell involve electrocatalytic activity from the metal core and adsorption effect from the shell, which interfere with practical SPR enhancement contribution to ECL signal. Herein, to exclude the interference and unveil exact SPR-enhanced effect, shell-isolated nanoparticles (SHINs) whose shell gets thicker and becomes pinhole-free are developed by modifying pH value and particles concentration. Furthermore, allowing for the distribution of hotspots and stronger enhancement, excitation intensity and ECL reaction layer thickness are mainly investigated, and several types of SHINs-enhanced ECL platforms are prepared to fabricate distinct hotspot distribution via electrostatic attraction (submonolayer) and a layer-by-layer deposition method (monolayer). Consequently, the strongest enhancement up to ≈250-fold is achieved by monolayer SHINs with 10 nm shell, and the platform is applied in a "turn-off" mode sensing for dopamine. The platform provides new guidelines to shell preparation, interface engineering and hotspots fabrication for superior ECL enhancement and analytical application with high performance.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2022 Tipo de documento: Article