Your browser doesn't support javascript.
loading
Multi-Omic Investigations of a 17-19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis.
Eisfeldt, Jesper; Schuy, Jakob; Stattin, Eva-Lena; Kvarnung, Malin; Falk, Anna; Feuk, Lars; Lindstrand, Anna.
Afiliação
  • Eisfeldt J; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
  • Schuy J; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden.
  • Stattin EL; Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden.
  • Kvarnung M; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
  • Falk A; Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden.
  • Feuk L; Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden.
  • Lindstrand A; Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden.
Int J Mol Sci ; 23(16)2022 Aug 20.
Article em En | MEDLINE | ID: mdl-36012658
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient's cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient's cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Transtorno Autístico / Proteínas Serina-Treonina Quinases / Epilepsia Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Transtorno Autístico / Proteínas Serina-Treonina Quinases / Epilepsia Idioma: En Ano de publicação: 2022 Tipo de documento: Article