Your browser doesn't support javascript.
loading
Molecular Epidemiology of Penicillin-Susceptible Staphylococcus aureus Bacteremia in Australia and Reliability of Diagnostic Phenotypic Susceptibility Methods to Detect Penicillin Susceptibility.
Coombs, Geoffrey W; Yee, Nicholas W T; Daley, Denise; Bennett, Catherine M; Robinson, James O; Stegger, Marc; Shoby, Princy; Mowlaboccus, Shakeel.
Afiliação
  • Coombs GW; Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia.
  • Yee NWT; Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia.
  • Daley D; Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia.
  • Bennett CM; Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia.
  • Robinson JO; Institute of Health Transformation, Deakin University, Melbourne, VIC 3125, Australia.
  • Stegger M; Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia.
  • Shoby P; Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia.
  • Mowlaboccus S; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA 6150, Australia.
Microorganisms ; 10(8)2022 Aug 15.
Article em En | MEDLINE | ID: mdl-36014068
ABSTRACT

BACKGROUND:

Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the proportion of methicillin-susceptible S. aureus causing bacteremia identified phenotypically as penicillin-susceptible has increased by over 35%, from 17.5% in 2013 to 23.7% in 2020.

OBJECTIVES:

To determine the population structure of PSSA causing community- and hospital-onset bacteremia in Australia and to evaluate routine phenotypic antimicrobial susceptibility methods to reliably confirm penicillin resistance on blaZ-positive S. aureus initially classified as penicillin-susceptible by the Vitek® 2 automated microbiology system.

RESULTS:

Whole genome sequencing on 470 PSSA collected in the 2020 Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme identified 84 multilocus sequence types (STs), of which 79 (463 isolates) were grouped into 22 clonal complexes (CCs). The dominant CCs included CC5 (31.9%), CC97 (10.2%), CC45 (10.0%), CC15 (8.7%), and CC188 (4.9%). Many of the CCs had multiple STs and spa types and, based on the immune evasion cluster type, isolates within a CC could be classified into different strains harboring a range of virulence and resistance genes. Phylogenetic analyses of the isolates showed most CCs were represented by one clade. The blaZ gene was identified in 45 (9.6%) PSSA. Although multiclonal, approximately 50% of blaZ-positive PSSA were from CC15 and were found to be genetically distant from the blaZ-negative CC15 PSSA. The broth microdilution, Etest® and cefinase, performed poorly; however, when the appearance of the zone edge was considered; as per the EUCAST and CLSI criteria, disc diffusion detected 100% of blaZ-positive PSSA.

CONCLUSIONS:

In Australia, PSSA bacteremia is not caused by the expansion of a single clone. Approximately 10% of S. aureus classified as penicillin-susceptible by the Vitek® 2 harbored blaZ. Consequently, we recommend that confirmation of Vitek® 2 PSSA be performed using an alternative method, such as disc diffusion with careful interpretation of the zone edge.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article