Your browser doesn't support javascript.
loading
The Length Change Ratio of Ground Granulated Blast Furnace Slag-Based Geopolymer Blended with Magnesium Oxide Cured in Various Environments.
Chen, Yen-Chun; Lee, Wei-Hao; Cheng, Ta-Wui; Chen, Walter; Li, Yeou-Fong.
Afiliação
  • Chen YC; Institute of Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan.
  • Lee WH; Institute of Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan.
  • Cheng TW; Institute of Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan.
  • Chen W; Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
  • Li YF; Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
Polymers (Basel) ; 14(16)2022 Aug 18.
Article em En | MEDLINE | ID: mdl-36015642
ABSTRACT
Geopolymer (GP) has been considered a potential material to replace ordinary Portland cement (OPC) because of its excellent mechanical properties and environmentally friendly process. However, the promotion of GP is limited due to the large shrinkage and the different operating procedures compared to cement. This study aims to reduce the shrinkage of ground granulated blast furnace slag (GGBFS) based GP by the hydration expansion properties of activated magnesium oxide (MgO). The slurry of GP was blended from GGBFS, MgO, and activator; and the compositions of the activator are sodium hydroxide (NaOH), sodium silicate (Na2SiO3), and alumina silicate(NaAlO2). Herein, the GGFBS and MgO were a binder and a shrinkage compensation agent of GP, respectively. After unmolding, the GP specimens were cured under four types of environments and the lengths of the specimens were measured at different time intervals to understand the length change ratio of GP. In this study, two groups of GP specimens were made by fixing the activator to binder (A/B) ratio and the fluidity. The test results show that adding MgO will reduce the shrinkage of GP as A/B ratio was fixed. However, fixing the fluidity exhibited the opposite results. The X-ray diffraction (XRD) was used to check the Mg(OH)2 that occurred due to the MgO hydration under four curing conditions. Three statistical and machine learning methods were used to analyze the length change of GP based on the test data. The testing and analysis results show that the influence of curing environments is more significant for improving the shrinkage of GP than additive MgO.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article