Your browser doesn't support javascript.
loading
Assays for the Evaluation of the Immune Response to Marburg and Ebola Sudan Vaccination-Filovirus Animal Nonclinical Group Anti-Marburg Virus Glycoprotein Immunoglobulin G Enzyme-Linked Immunosorbent Assay and a Pseudovirion Neutralization Assay.
Rudge, Thomas L; Machesky, Nicholas J; Sankovich, Karen A; Lemmon, Erin E; Badorrek, Christopher S; Overman, Rachel; Niemuth, Nancy A; Anderson, Michael S.
Afiliação
  • Rudge TL; Battelle, West Jefferson, OH 43162, USA.
  • Machesky NJ; Battelle, West Jefferson, OH 43162, USA.
  • Sankovich KA; Battelle, West Jefferson, OH 43162, USA.
  • Lemmon EE; Battelle, West Jefferson, OH 43162, USA.
  • Badorrek CS; Contract Support for the U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA.
  • Overman R; U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA.
  • Niemuth NA; Battelle, West Jefferson, OH 43162, USA.
  • Anderson MS; Battelle, West Jefferson, OH 43162, USA.
Vaccines (Basel) ; 10(8)2022 Jul 29.
Article em En | MEDLINE | ID: mdl-36016099
Since the discovery of the Marburg virus (MARV) in 1967 and Ebola virus (EBOV) in 1976, there have been over 40 reported outbreaks of filovirus disease with case fatality rates greater than 50%. This underscores the need for efficacious vaccines against these highly pathogenic filoviruses. Due to the sporadic and unpredictable nature of filovirus outbreaks, such a vaccine would likely need to be vetted through the U.S. Food and Drug Administration (FDA), following the Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal challenge, will need to be bridged for human immune response distributions in clinical trials. A correlate of protection has not yet been identified for the filovirus disease, but antibodies, specifically anti-glycoprotein (GP) antibodies, are believed to be critical in providing protection against the filovirus disease following vaccination and are thus a strong candidate for a correlate of protection. Thus, species-neutral methods capable of the detection and bridging of these antibody immune responses, such as methods to quantify anti-GP immunoglobulin G (IgG)-binding antibodies and neutralizing antibodies, are needed. Reported here is the development and qualification of two Filovirus Animal Nonclinical Group (FANG) anti-GP IgG Enzyme-Linked Immunosorbent Assays (ELISAs) to quantify anti-MARV and anti-Sudan virus (SUDV) IgG antibodies in human and NHP serum samples, as well as the development of pseudovirion neutralization assays (PsVNAs) to quantify MARV- and SUDV-neutralizing antibodies in human and NHP serum samples.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article