Your browser doesn't support javascript.
loading
A Series of Trifluoromethylisoxazolyl- and Trifluoromethylpyrazolyl- Substituted (Hetero)aromatic Sulfonamide Carbonic Anhydrase Inhibitors: Synthesis, and Convenient Prioritization Workflow for Further In Vivo Studies.
Sibincic, Nikolina; Kalinin, Stanislav; Sharoyko, Vladimir; Efimova, Julia; Gasilina, Olga A; Korsakov, Mikhail; Gureev, Maxim; Krasavin, Mikhail.
Afiliação
  • Sibincic N; Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
  • Kalinin S; Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
  • Sharoyko V; Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
  • Efimova J; Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108/1Respublikanskaya St., Yaroslavl 150000, Russia.
  • Gasilina OA; Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University named after K.D. Ushinsky, 108/1 Respublikanskaya St., Yaroslavl 150000, Russia.
  • Korsakov M; Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named After K.D. Ushinsky, 108/1Respublikanskaya St., Yaroslavl 150000, Russia.
  • Gureev M; Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
  • Krasavin M; Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
Med Chem ; 19(2): 193-210, 2023.
Article em En | MEDLINE | ID: mdl-36045518
ABSTRACT

AIMS:

To synthesize novel sulfonamide inhibitors of carbonic anhydrase and develop in vitro prioritization workflow to select compounds for in vivo evaluation.

BACKGROUND:

Carbonic anhydrase (CA) inhibitors gain significant attention in the context of drug discovery research for glaucoma, hypoxic malignancies, and bacterial infections. In previous works, we have successfully used direct sulfochlorination approach to develop diverse heterocyclic primary sulfonamides with remarkable activity and selectivity against therapeutically relevant CA isoforms.

OBJECTIVE:

Synthesis and investigation of the CA inhibitory properties of novel trifluoromethylisoxazolyl- and trifluoromethylpyrazolyl-substituted (hetero)aromatic sulfonamides.

METHODS:

Thirteen trifluoromethylisoxazolyl- and thirteen trifluoromethylpyrazolyl-substituted (hetero) aromatic sulfonamides were synthesized by direct sulfochlorination of hydroxyisoxazolines and pyrazoles followed by reaction with ammonia. The compound structures were confirmed by 1H and 13C NMR as well as element analysis. The obtained compounds were evaluated, using the CA esterase activity assay, for their potential to block the catalytic activity of bovine CA (bCA).

RESULTS:

Eight most potent compounds selected based on the esterase activity assay data were tested for direct affinity to the enzyme using the thermal shift assay (TSA). These compounds displayed Kd values (measured by TSA) in the double-digit nanomolar range, thus showing comparable activity to the reference drug acetazolamide.

CONCLUSION:

Coupling the bCA esterase activity assay with thermal shift assay represents a streamlined and economical strategy for the prioritization of sulfonamide CA inhibitors for subsequent evaluation in vivo.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores da Anidrase Carbônica / Anidrases Carbônicas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores da Anidrase Carbônica / Anidrases Carbônicas Idioma: En Ano de publicação: 2023 Tipo de documento: Article