Your browser doesn't support javascript.
loading
The fluctuation-dissipation measurement instrument at the Linac Coherent Light Source.
Assefa, T A; Seaberg, M H; Reid, A H; Shen, L; Esposito, V; Dakovski, G L; Schlotter, W; Holladay, B; Streubel, R; Montoya, S A; Hart, P; Nakahara, K; Moeller, S; Kevan, S D; Fischer, P; Fullerton, E E; Colocho, W; Lutman, A; Decker, F-J; Sinha, S K; Roy, S; Blackburn, E; Turner, J J.
Afiliação
  • Assefa TA; Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Seaberg MH; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Reid AH; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Shen L; Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Esposito V; Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Dakovski GL; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Schlotter W; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Holladay B; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Streubel R; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, USA.
  • Montoya SA; Center for Memory and Recording Research, University of California-San Diego, La Jolla, California 92093, USA.
  • Hart P; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Nakahara K; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Moeller S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Kevan SD; Department of Physics, University of Oregon, Eugene, Oregon 97401, USA.
  • Fischer P; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Physics Department, University of California Santa Cruz, Santa Cruz, California 95064, USA.
  • Fullerton EE; Center for Memory and Recording Research, University of California-San Diego, La Jolla, California 92093, USA.
  • Colocho W; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Lutman A; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Decker FJ; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94720, USA.
  • Sinha SK; Department of Physics, University of California-San Diego, La Jolla, California 92093, USA.
  • Roy S; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Blackburn E; Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden.
  • Turner JJ; Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Rev Sci Instrum ; 93(8): 083902, 2022 Aug 01.
Article em En | MEDLINE | ID: mdl-36050107
ABSTRACT
The development of new modes at x-ray free electron lasers has inspired novel methods for studying fluctuations at different energies and timescales. For closely spaced x-ray pulses that can be varied on ultrafast time scales, we have constructed a pair of advanced instruments to conduct studies targeting quantum materials. We first describe a prototype instrument built to test the proof-of-principle of resonant magnetic scattering using ultrafast pulse pairs. This is followed by a description of a new endstation, the so-called fluctuation-dissipation measurement instrument, which was used to carry out studies with a fast area detector. In addition, we describe various types of diagnostics for single-shot contrast measurements, which can be used to normalize data on a pulse-by-pulse basis and calibrate pulse amplitude ratios, both of which are important for the study of fluctuations in materials. Furthermore, we present some new results using the instrument that demonstrates access to higher momentum resolution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article