Your browser doesn't support javascript.
loading
Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle.
Liu, Lei; Yue, Xianlin; Sun, Zewei; Hambright, William S; Feng, Qi; Cui, Yan; Huard, Johnny; Robbins, Paul D; Wang, Zhihui; Mu, Xiaodong.
Afiliação
  • Liu L; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Yue X; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Sun Z; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Hambright WS; Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
  • Feng Q; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Cui Y; University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  • Huard J; Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
  • Robbins PD; Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
  • Wang Z; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
  • Mu X; Shandong The First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Aging (Albany NY) ; 14(19): 7650-7661, 2022 09 08.
Article em En | MEDLINE | ID: mdl-36084954
ABSTRACT
The aging of the immune system, or immunosenescence, was recently verified to have a causal role in driving the aging of solid organs, while the senolytic elimination of senescent immune cells was found to effectively delay systemic aging. Our recent study also showed that immune cells in severely dystrophic muscles develop senescence-like phenotypes, including the increased expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Here we further investigated whether the specific clearance of senescent immune cells in dystrophic muscle may effectively improve the function of muscle stem cells and the phenotypes of dystrophic muscle. We observed increased percentage of senescent cells in macrophages from mdx/utro(-/-) mice (a murine model for muscular dystrophy disease, dystrophin-/-; utrophin-/-), while the treatment of mdx/utro(-/-) macrophages with senolytic drug fisetin resulted in reduced number of senescent cells. We administrated fisetin to mdx/utro(-/-) mice for 4 weeks, and observed obviously reduced number of senescent immune cells, restored number of muscle cells, and improve muscle phenotypes. In conclusion, our results reveal that senescent immune cells, such as macrophages, are greatly involved in the development of muscle dystrophy by impacting the function of muscle stem cells, and the senolytic ablation of these senescent cells with fisetin can be an effective therapeutic strategy for improving function of muscle stem cells and phenotypes of dystrophic muscles.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Distrofina / Doenças Musculares Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Distrofina / Doenças Musculares Idioma: En Ano de publicação: 2022 Tipo de documento: Article