Your browser doesn't support javascript.
loading
Atrial fibrosis identification with unipolar electrogram eigenvalue distribution analysis in multi-electrode arrays.
Riccio, Jennifer; Alcaine, Alejandro; Rocher, Sara; Martinez-Mateu, Laura; Saiz, Javier; Invers-Rubio, Eric; Guillem, Maria S; Martínez, Juan Pablo; Laguna, Pablo.
Afiliação
  • Riccio J; BSICoS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain. jenriccio@unizar.es.
  • Alcaine A; CoMBA & BSICoS Groups, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain.
  • Rocher S; Centro de Investigación e Innovación en Ingeniería, Universitat Politècnica de València, Valencia, Spain.
  • Martinez-Mateu L; Departamento de Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain.
  • Saiz J; Centro de Investigación e Innovación en Ingeniería, Universitat Politècnica de València, Valencia, Spain.
  • Invers-Rubio E; IDIBAPS Institute, Hospital Clínic, Barcelona, Spain.
  • Guillem MS; ITACA Institute, Universitat Politècnica de València, València, Spain.
  • Martínez JP; BSICoS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
  • Laguna P; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
Med Biol Eng Comput ; 60(11): 3091-3112, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36098928
ABSTRACT
Atrial fibrosis plays a key role in the initiation and progression of atrial fibrillation (AF). Atrial fibrosis is typically identified by a peak-to-peak amplitude of bipolar electrograms (b-EGMs) lower than 0.5 mV, which may be considered as ablation targets. Nevertheless, this approach disregards signal spatiotemporal information and b-EGM sensitivity to catheter orientation. To overcome these limitations, we propose the dominant-to-remaining eigenvalue dominance ratio (EIGDR) of unipolar electrograms (u-EGMs) within neighbor electrode cliques as a waveform dispersion measure, hypothesizing that it is correlated with the presence of fibrosis. A simulated 2D tissue with a fibrosis patch was used for validation. We computed EIGDR maps from both original and time-aligned u-EGMs, denoted as [Formula see text] and [Formula see text], respectively, also mapping the gain in eigenvalue concentration obtained by the alignment, [Formula see text]. The performance of each map in detecting fibrosis was evaluated in scenarios including noise and variable electrode-tissue distance. Best results were achieved by [Formula see text], reaching 94% detection accuracy, versus the 86% of b-EGMs voltage maps. The proposed strategy was also tested in real u-EGMs from fibrotic and non-fibrotic areas over 3D electroanatomical maps, supporting the ability of the EIGDRs as fibrosis markers, encouraging further studies to confirm their translation to clinical settings. Upper panels map of [Formula see text] from 3×3 cliques for Ψ= 0∘ and bipolar voltage map Vb-m, performed assuming a variable electrode-to-tissue distance and noisy u-EGMs (noise level σv = 46.4 µV ). Lower panels detected fibrotic areas (brown), using the thresholds that maximize detection accuracy of each map.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Ablação por Cateter Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Ablação por Cateter Idioma: En Ano de publicação: 2022 Tipo de documento: Article