Your browser doesn't support javascript.
loading
Effect of Mixed Acid Fluid on the Pore Structure of High Rank Coal and Acid Fluid Optimization.
Wang, Chunxia; Gao, Jianliang; Zhang, Xuebo.
Afiliação
  • Wang C; College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China.
  • Gao J; School of Mining and Mechanical Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, China.
  • Zhang X; College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China.
ACS Omega ; 7(37): 33280-33294, 2022 Sep 20.
Article em En | MEDLINE | ID: mdl-36157754
Acidizing technology is an important means to increase production in oil-gas reservoirs. In recent years, acidizing technology has been widely used to increase the permeability of coal seams to enhance gas extraction, where acidizing fluid is the key factor to determine the permeability improvement effect by acidizing technology. In order to clarify the influence of mixed acid fluid on the pore structure of high rank coal and seek the optimal mixed acid fluid suitable for acidizing and permeability improvement of high rank coal in the Jiaozuo coal mine area. Taking the Jiulishan Mine in the Jiaozuo mining area as an example, low field nuclear magnetic resonance (LFNMR) test and static dissolution test were conducted to obtain the T 2 spectrum, porosity, movable fluid saturation, pore throat distribution, nuclear magnetic permeability, and dissolution rate of coal samples before and after treatment with distilled water and three mixed acid fluids. On this basis, the influence of mixed acid fluid on the pore structure of high rank coal was analyzed and the optimal mixed acid fluid suitable for high rank coal was selected. The results showed that the pore size, number, and volume of all kinds of pore sizes of coal samples treated with distilled water all decreased, which was manifested by the decrease of effective porosity and nuclear magnetic permeability. After acidification, the proportion of micropore volume in coal decreased significantly, the number and proportion of pore volume of mesopores and macropore-microfractures increased significantly, and the connectivity between mesopores and macropore-microfractures was enhanced, which was characterized by the increase in effective porosity and nuclear magnetic permeability of coal samples. After acidification, the pore-throat ratio of adsorption pores of all coal samples decreased, while the pore-throat ratio of seepage pores increased. By comparatively analyzing the change law of pore structure of coal samples before and after acidizing with three kinds of mixed acid fluids, the optimal mixed acid fluid suitable for acidizing and permeability improvement of high rank coal in the Jiaozuo coal mine area was selected, which was 12%HCL +3%HF.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article