Your browser doesn't support javascript.
loading
Computational prediction of new magnetic materials.
Rahmanian Koshkaki, Saeed; Allahyari, Zahed; Oganov, Artem R; Solozhenko, Vladimir L; Polovov, Ilya B; Belozerov, Alexander S; Katanin, Andrey A; Anisimov, Vladimir I; Tikhonov, Evgeny V; Qian, Guang-Rui; Maksimtsev, Konstantin V; Mukhamadeev, Andrey S; Chukin, Andrey V; Korolev, Aleksandr V; Mushnikov, Nikolay V; Li, Hao.
Afiliação
  • Rahmanian Koshkaki S; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Allahyari Z; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Oganov AR; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Solozhenko VL; LSPM-CNRS, Universite Sorbonne Paris Nord, 93430 Villetaneuse, France.
  • Polovov IB; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Belozerov AS; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Katanin AA; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Anisimov VI; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Tikhonov EV; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
  • Qian GR; International Center for Materials Discovery, Northwestern Polytechnical University, Xi'an 710072, China.
  • Maksimtsev KV; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Mukhamadeev AS; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Chukin AV; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Korolev AV; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Mushnikov NV; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia.
  • Li H; Skolkovo Institute of Science and Technology, 30 Bldg. 1, Bolshoy Blvd., Moscow 121205, Russia.
J Chem Phys ; 157(12): 124704, 2022 Sep 28.
Article em En | MEDLINE | ID: mdl-36182427
The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article