Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite.
Nat Commun
; 13(1): 5903, 2022 Oct 06.
Article
em En
| MEDLINE
| ID: mdl-36202850
Emerging functionalities in two-dimensional materials, such as ferromagnetism, superconductivity and ferroelectricity, open new avenues for promising nanoelectronic applications. Here, we report the discovery of intrinsic in-plane room-temperature ferroelectricity in two-dimensional Bi2TeO5 grown by chemical vapor deposition, where spontaneous polarization originates from Bi column displacements. We found an intercalated buffer layer consist of mixed Bi/Te column as 180° domain wall which enables facile polarized domain engineering, including continuously tunable domain width by pinning different concentration of buffer layers, and even ferroelectric-antiferroelectric phase transition when the polarization unit is pinned down to single atomic column. More interestingly, the intercalated Bi/Te buffer layer can interconvert to polarized Bi columns which end up with series terraced domain walls and unusual fan-shaped ferroelectric domain. The buffer layer induced size and shape tunable ferroelectric domain in two-dimensional Bi2TeO5 offer insights into the manipulation of functionalities in van der Waals materials for future nanoelectronics.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article