Your browser doesn't support javascript.
loading
Intravenous infusion of bone marrow-derived mesenchymal stem cells improves tissue perfusion in a rat hindlimb ischemia model.
Maeda, Shusaku; Kawamura, Takuji; Sasaki, Masanori; Shimamura, Kazuo; Shibuya, Takashi; Harada, Akima; Honmou, Osamu; Sawa, Yoshiki; Miyagawa, Shigeru.
Afiliação
  • Maeda S; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Kawamura T; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Sasaki M; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
  • Shimamura K; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Shibuya T; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Harada A; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Honmou O; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
  • Sawa Y; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Miyagawa S; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan. miyagawa@surg1.med.osaka-u.ac.jp.
Sci Rep ; 12(1): 16986, 2022 10 10.
Article em En | MEDLINE | ID: mdl-36216855
ABSTRACT
Intravenous infusion of stem cells is a minimally invasive cellular delivery method, though a few have been reported in a critical limb-threatening ischemia (CLTI) animal model or patients. In the present study, we hypothesized that intravenous infusion of bone-marrow derived mesenchymal stem cells (MSCs) improves tissue perfusion in a rat hindlimb ischemia model. Hindlimb ischemia was generated in Sprague-Dawley rats by femoral artery removal, then seven days after ischemic induction intravenous infusion of 1 × 106 MSCs (cell group) or vehicle (control group) was performed. As compared with the control, tissue perfusion was significantly increased in the cell group. Histological findings showed that capillary density was significantly increased in the cell group, with infused green fluorescent protein (GFP)-MSCs distributed in the ischemic limb. Furthermore, gene expression of vascular endothelial growth factor (VEGF) was significantly increased in ischemic hindlimb muscle tissues of rats treated with MSC infusion. In conclusion, intravenous infusion of bone-marrow derived MSCs improved tissue perfusion in ischemic hindlimbs through angiogenesis, suggesting that intravenous infusion of MSCs was a promising cell delivery method for treatment of CLTI.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Vasculares Periféricas / Transplante de Células-Tronco Mesenquimais / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Vasculares Periféricas / Transplante de Células-Tronco Mesenquimais / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article