Solar-driven semi-conductor photocatalytic water treatment (TiO2, g-C3N4, and TiO2+g-C3N4) of cyanotoxins: Proof-of-concept study with microcystin-LR.
Chemosphere
; 310: 136828, 2023 Jan.
Article
em En
| MEDLINE
| ID: mdl-36241123
Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO2 and g-C3N4 coated floating photocatalysts using recycled glass beads. g-C3N4 coated and TiO2+g-C3N4 co-coated beads were able to completely remove microcystin-LR in artificial fresh water under both natural and simulated solar light irradiation without agitation in less than 2 h. TiO2 coated beads achieved complete removal within 8 h of irradiation. TiO2+g-C3N4 beads were more effective than g-C3N4 beads as demonstrated by the increase reaction rate with reaction constants, 0.0485 min-1 compared to 0.0264 min-1 respectively, with TiO2 alone found to be considerably slower 0.0072 min-1. g-C3N4 based photocatalysts showed a similar degradation pathway to TiO2 based photocatalysts by attacking the C6-C7 double bond on the Adda side chain.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cianobactérias
/
Purificação da Água
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article