Your browser doesn't support javascript.
loading
Using Deep Learning to Predict Final HER2 Status in Invasive Breast Cancers That are Equivocal (2+) by Immunohistochemistry.
Rasmussen, Sean A; Taylor, Valerie J; Surette, Alexi P; Barnes, Penny J; Bethune, Gillian C.
Afiliação
  • Rasmussen SA; Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada.
  • Taylor VJ; Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada.
  • Surette AP; Georges-L-Dumont University Hospital Centre, Moncton, New Brunswick, Canada.
  • Barnes PJ; Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada.
  • Bethune GC; Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada.
Appl Immunohistochem Mol Morphol ; 30(10): 668-673, 2022.
Article em En | MEDLINE | ID: mdl-36251973
Invasive breast carcinomas are routinely tested for HER2 using immunohistochemistry (IHC), with reflex in situ hybridization (ISH) for those scored as equivocal (2+). ISH testing is expensive, time-consuming, and not universally available. In this study, we trained a deep learning algorithm to directly predict HER2 gene amplification status from HER2 2+ IHC slides. Data included 115 consecutive cases of invasive breast carcinoma scored as 2+ by IHC that had follow-up HER2 ISH testing. An external validation data set was created from 36 HER2 IHC slides prepared at an outside institution. All internal IHC slides were digitized and divided into training (80%), and test (20%) sets with 5-fold cross-validation. Small patches (256×256 pixels) were randomly extracted and used to train convolutional neural networks with EfficientNet B0 architecture using a transfer learning approach. Predictions for slides in the test set were made on individual patches, and these predictions were aggregated to generate an overall prediction for each slide. This resulted in a receiver operating characteristic area under the curve of 0.83 with an overall accuracy of 79% (sensitivity=0.70, specificity=0.82). Analysis of external validation slides resulted in a receiver operating characteristic area under the curve of 0.79 with an overall accuracy of 81% (sensitivity=0.50, specificity=0.82). Although the sensitivity and specificity are not high enough to negate the need for reflexive ISH testing entirely, this approach may be useful for triaging cases more likely to be HER2 positive and initiating treatment planning in centers where HER2 ISH testing is not readily available.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Aprendizado Profundo Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Aprendizado Profundo Idioma: En Ano de publicação: 2022 Tipo de documento: Article