Your browser doesn't support javascript.
loading
In situ monitoring of functional activity of extracellular matrix stiffness-dependent multidrug resistance protein 1 using scanning electrochemical microscopy.
Kuermanbayi, Shuake; Yang, Yaowei; Zhao, Yuxiang; Li, Yabei; Wang, Le; Yang, Jin; Zhou, Yan; Xu, Feng; Li, Fei.
Afiliação
  • Kuermanbayi S; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University 710049 Xi'an Shaanxi China fengxu@mail.xjtu.edu.cn feili@mail.xjtu.edu.cn.
  • Yang Y; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
  • Zhao Y; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University 710049 Xi'an Shaanxi China fengxu@mail.xjtu.edu.cn feili@mail.xjtu.edu.cn.
  • Li Y; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
  • Wang L; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University 710049 Xi'an Shaanxi China fengxu@mail.xjtu.edu.cn feili@mail.xjtu.edu.cn.
  • Yang J; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
  • Zhou Y; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
  • Xu F; School of Chemistry, Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
  • Li F; Department of Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University 710049 Xi'an Shaanxi China.
Chem Sci ; 13(35): 10349-10360, 2022 Sep 14.
Article em En | MEDLINE | ID: mdl-36277620
ABSTRACT
Extracellular matrix (ECM) stiffness affects the drug resistance behavior of cancer cells, while multidrug resistance protein 1 (MRP1) on the cell membrane confers treatment resistance via actively transporting drugs out of cancer cells. However, the relationship between ECM stiffness and MRP1 functional activity in cancer cells remains elusive, mainly due to the technical challenge of in situ monitoring. Herein, we engineered in vitro cancer cell models using breast cancer cells (MCF-7 and MDA-MB-231 cells) as the reprehensive cells on polyacrylamide (PA) gels with three stiffness, mimicking different developmental stages of cancer. We in situ characterized the functional activity of MRP1 and investigated the effect of ECM stiffness on MRP1 of cancer cells before and after vincristine treatment using scanning electrochemical microscopy (SECM) with ferrocenecarboxylic acid (FcCOOH) as the redox mediator and endogenous glutathione (GSH) as the indicator. The SECM results show that the functional activity of MRP1 is enhanced with increasing ECM stiffness, and the MRP1-mediated vincristine efflux activity of MCF-7 cells is more affected by ECM stiffness than that of MDA-MB-231 cells. This work, for the first time, applied SECM to in situ and quantitatively monitor the functional activity of MRP1 in cancer cells in different tumor mechanical microenvironments, which could help to elucidate the mechanism of matrix stiffness-dependent drug resistance behavior in cancer cells.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article