Your browser doesn't support javascript.
loading
Role of MRI-Derived Radiomics Features in Determining Degree of Tumor Differentiation of Hepatocellular Carcinoma.
Ameli, Sanaz; Venkatesh, Bharath Ambale; Shaghaghi, Mohammadreza; Ghadimi, Maryam; Hazhirkarzar, Bita; Rezvani Habibabadi, Roya; Aliyari Ghasabeh, Mounes; Khoshpouri, Pegah; Pandey, Ankur; Pandey, Pallavi; Pan, Li; Grimm, Robert; Kamel, Ihab R.
Afiliação
  • Ameli S; Department of Radiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
  • Venkatesh BA; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Shaghaghi M; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Ghadimi M; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Hazhirkarzar B; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Rezvani Habibabadi R; Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA.
  • Aliyari Ghasabeh M; Department of Radiology, Saint Louis University, 1201 S Grand Blvd, St. Louis, MO 63104, USA.
  • Khoshpouri P; Department of Radiology, University of Washington Main Hospital, 1959 NE Pacific St., 2nd Floor, Seattle, WA 98195, USA.
  • Pandey A; Department of Radiology, University of Maryland Medical Center, 22 S Greene St., Baltimore, MD 21201, USA.
  • Pandey P; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Pan L; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Grimm R; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
  • Kamel IR; Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Article em En | MEDLINE | ID: mdl-36292074
Background: To investigate radiomics ability in predicting hepatocellular carcinoma histological degree of differentiation by using volumetric MR imaging parameters. Methods: Volumetric venous enhancement and apparent diffusion coefficient were calculated on baseline MRI of 171 lesions. Ninety-five radiomics features were extracted, then random forest classification identified the performance of the texture features in classifying tumor degree of differentiation based on their histopathological features. The Gini index was used for split criterion, and the random forest was optimized to have a minimum of nine participants per leaf node. Predictor importance was estimated based on the minimal depth of the maximal subtree. Results: Out of 95 radiomics features, four top performers were apparent diffusion coefficient (ADC) features. The mean ADC and venous enhancement map alone had an overall error rate of 39.8%. The error decreased to 32.8% with the addition of the radiomics features in the multi-class model. The area under the receiver-operator curve (AUC) improved from 75.2% to 83.2% with the addition of the radiomics features for distinguishing well- from moderately/poorly differentiated HCCs in the multi-class model. Conclusions: The addition of radiomics-based texture analysis improved classification over that of ADC or venous enhancement values alone. Radiomics help us move closer to non-invasive histologic tumor grading of HCC.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article