Your browser doesn't support javascript.
loading
Effects of combined enzymatic hydrolysis and fed-batch operation on efficient improvement of ferulic acid and p-coumaric acid production from pretreated corn straws.
Qian, Shiquan; Gao, Shuliang; Li, Jingwen; Liu, Shanshan; Diao, Enjie; Chang, Wenli; Liang, Xiaona; Xie, Peng; Jin, Ci.
Afiliação
  • Qian S; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Gao S; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Li J; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Liu S; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Diao E; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Chang W; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Liang X; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Xie P; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
  • Jin C; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, Chi
Bioresour Technol ; 366: 128176, 2022 Dec.
Article em En | MEDLINE | ID: mdl-36307030
In the present work, the effects of combined enzymatic hydrolysis by cellulase and xylanase (CXEH), fed-batch enzymatic hydrolysis (FBEH) operation and kinetics on production of ferulic acid (FA) and p-coumaric acid (pCA) from pretreated corn straws were investigated. The results showed that CXEH could efficiently increase production of FA and pCA. When performed the FBEH operation by feeding 150 mL enzymatic hydrolysis solution (1.5 % enzyme concentration, 5:4 (v/v) ratio of cellulase to xylanase and 2.0 % substrate loading) to 250 mL batch enzymatic hydrolysis solution at 36 h, the maximum production (2178.58 and 2710.17 mg/L) and production rate (590.95 and 727.89 mg/L.h) of FA and pCA were respectively obtained. Moreover, the disruption of fiber tissues, enhancement of crystallinity and accelerated degradation of hemicelluloses and lignocelluloses caused by CXEH contributed to effectively improving production of FA and pCA in corn straws.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Celulase / Zea mays Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Celulase / Zea mays Idioma: En Ano de publicação: 2022 Tipo de documento: Article