Your browser doesn't support javascript.
loading
Thermo-Responsive Polymer-siRNA Conjugates Enabling Artificial Control of Gene Silencing around Body Temperature.
Honda, Yuto; Onodera, Sayaka; Takemoto, Hiroyasu; Harun, Noor Faizah Che; Nomoto, Takahiro; Matsui, Makoto; Tomoda, Keishiro; Sun, Yudi; Miura, Yutaka; Nishiyama, Nobuhiro.
Afiliação
  • Honda Y; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Onodera S; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Takemoto H; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
  • Harun NFC; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Nomoto T; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Matsui M; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Tomoda K; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Sun Y; Universiti Kuala Lumpur - Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988, Vendor City, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
  • Miura Y; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
  • Nishiyama N; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
Pharm Res ; 40(1): 157-165, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36307662
ABSTRACT

PURPOSE:

Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature.

METHODS:

siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells.

RESULTS:

The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C.

CONCLUSION:

By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Temperatura Corporal Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Temperatura Corporal Idioma: En Ano de publicação: 2023 Tipo de documento: Article