Your browser doesn't support javascript.
loading
Ability-Based Methods for Personalized Keyboard Generation.
Mitchell, Claire L; Cler, Gabriel J; Fager, Susan K; Contessa, Paola; Roy, Serge H; De Luca, Gianluca; Kline, Joshua C; Vojtech, Jennifer M.
Afiliação
  • Mitchell CL; Delsys, Inc., Natick, MA 01760, USA.
  • Cler GJ; Altec, Inc., Natick, MA 01760, USA.
  • Fager SK; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA.
  • Contessa P; Institute of Rehabilitation Science and Engineering, Madonna Rehabilitation Hospital, Lincoln, NE 68506, USA.
  • Roy SH; Delsys, Inc., Natick, MA 01760, USA.
  • De Luca G; Altec, Inc., Natick, MA 01760, USA.
  • Kline JC; Delsys, Inc., Natick, MA 01760, USA.
  • Vojtech JM; Altec, Inc., Natick, MA 01760, USA.
Article em En | MEDLINE | ID: mdl-36313956
This study introduces an ability-based method for personalized keyboard generation, wherein an individual's own movement and human-computer interaction data are used to automatically compute a personalized virtual keyboard layout. Our approach integrates a multidirectional point-select task to characterize cursor control over time, distance, and direction. The characterization is automatically employed to develop a computationally efficient keyboard layout that prioritizes each user's movement abilities through capturing directional constraints and preferences. We evaluated our approach in a study involving 16 participants using inertial sensing and facial electromyography as an access method, resulting in significantly increased communication rates using the personalized keyboard (52.0 bits/min) when compared to a generically optimized keyboard (47.9 bits/min). Our results demonstrate the ability to effectively characterize an individual's movement abilities to design a personalized keyboard for improved communication. This work underscores the importance of integrating a user's motor abilities when designing virtual interfaces.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article