Your browser doesn't support javascript.
loading
Frustrated 'run and tumble' of swimming Escherichia coli bacteria in nematic liquid crystals.
Goral, Martyna; Clement, Eric; Darnige, Thierry; Lopez-Leon, Teresa; Lindner, Anke.
Afiliação
  • Goral M; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
  • Clement E; Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris-PSL, 75005 Paris, France.
  • Darnige T; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
  • Lopez-Leon T; Institut Universitaire de France (IUF), Paris, France.
  • Lindner A; Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
Interface Focus ; 12(6): 20220039, 2022 Dec 06.
Article em En | MEDLINE | ID: mdl-36330319
ABSTRACT
In many situations, bacteria move in complex environments, as soils, oceans or the human gut-track, where carrier fluids show complex structures associated with non-Newtonian rheology. Many fundamental questions concerning the ability to navigate in such environments remain unsolved. Recently, it has been shown that the kinetics of bacterial motion in structured fluids as liquid crystals (LCs) is constrained by the orientational molecular order (or director field) and that novel spatio-temporal patterns arise. A question unaddressed so far is how bacteria change swimming direction in such an environment. In this work, we study the swimming mechanism of a single bacterium, Esherichia coli, constrained to move along the director field of a lyotropic chromonic liquid crystal confined to a planar cell. Here, the spontaneous 'run and tumble' motion of the bacterium gets frustrated the elasticity of the LC prevents flagella from unbundling. Interestingly, to change direction, bacteria execute a reversal motion along the director field, driven by the relocation of a single flagellum, a 'frustrated tumble'. We characterize this phenomenon in detail experimentally, exploiting exceptional spatial and temporal resolution of bacterial and flagellar dynamics, using a two colour Lagrangian tracking technique. We suggest a possible mechanism accounting for these observations.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article