Your browser doesn't support javascript.
loading
Alleviation of osteoarthritis by intra-articular transplantation of circulating mesenchymal stem cells.
Lin, Weiping; Yang, Zhengmeng; Shi, Liu; Wang, Haixing; Pan, Qi; Zhang, Xiaoting; Zhang, Peng; Lin, Sien; Li, Gang.
Afiliação
  • Lin W; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Yang Z; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Shi L; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Wang H; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Pan Q; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Zhang X; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Zhang P; Institute of Translational and Medical Research and Development Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
  • Lin S; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
  • Li G; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chin
Biochem Biophys Res Commun ; 636(Pt 1): 25-32, 2022 12 25.
Article em En | MEDLINE | ID: mdl-36332479
ABSTRACT
This study aimed to evaluate the efficacy of intra-articular delivery of peripheral blood derived mesenchymal stromal cells (PB-MSCs) on the progression of trauma-induced osteoarthritis (OA) in mice. Adult male C57BL/6J mice subjected to destabilization of the medial meniscus surgeries (DMM) were randomly divided into four groups sham surgery group; vehicle control group (treated with saline), PBMSC-treated group, or adipose tissue derived MSCs (AD-MSC)-treated group (n = 4 per group). PB-MSCs and AD-MSCs were harvested and cultured following previously established protocols, and pre-labeled with BrdU for 48 h before transplantation. PB-MSCs or AD-MSCs (5 × 105 cells/mouse; passage 3-5) were intra-articular injected into the right knee joints thrice post-surgery. The mice were euthanized at 8 weeks post-surgery and knee joint samples were collected for micro-CT and histological examinations. PB-MSCs administration significantly reduced subchondral bone volume comparing to the vehicle control group. Safranin O staining showed that PB-MSCs treatment ameliorated degeneration of articular cartilage, which was comparable to AD-MSCs treatment. The expression of catabolic marker MMP13 was significantly reduced in articular cartilage of the PB-MSCs treated group comparing to that of the vehicle control group. Co-expression of BrdU and Sox9 indicated that injected PB-MSCs differentiated in chondrocytes in situ, along with reduced levels of IL-6 within peripheral sera of PB-MSCs- and AD-MSCs-treated mice. Therefore, administration of PB-MSCs or AD-MSCs attenuated trauma-induced OA progression through inhibiting cartilage degradation and inflammation. PB-MSCs are ideal cell source for treating cartilage-associated diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular / Transplante de Células-Tronco Mesenquimais / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoartrite / Cartilagem Articular / Transplante de Células-Tronco Mesenquimais / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article