Your browser doesn't support javascript.
loading
Adhesive and Self-Healing Polyurethanes with Tunable Multifunctionality.
Zhou, Lei; Zhang, Lu; Li, Peichuang; Maitz, Manfred F; Wang, Kebing; Shang, Tengda; Dai, Sheng; Fu, Yudie; Zhao, Yuancong; Yang, Zhilu; Wang, Jin; Li, Xin.
Afiliação
  • Zhou L; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Zhang L; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Li P; Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze 274000, China.
  • Maitz MF; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Wang K; Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
  • Shang T; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Dai S; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Fu Y; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Zhao Y; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Yang Z; School of Materials Science and Engineering, Southwest Jiaotong University, Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, 610031 Sichuan, China.
  • Wang J; Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China.
  • Li X; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong 510080, China.
Research (Wash D C) ; 2022: 9795682, 2022.
Article em En | MEDLINE | ID: mdl-36349335
ABSTRACT
Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (C-PU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article