Your browser doesn't support javascript.
loading
Targeting ARF1-IQGAP1 interaction to suppress colorectal cancer metastasis and vemurafenib resistance.
Hu, Hui-Fang; Gao, Gui-Bin; He, Xuan; Li, Yu-Ying; Li, Yang-Jia; Li, Bin; Pan, YunLong; Wang, Yang; He, Qing-Yu.
Afiliação
  • Hu HF; The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science an
  • Gao GB; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
  • He X; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
  • Li YY; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
  • Li YJ; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
  • Li B; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
  • Pan Y; The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China. Electronic address: tpanyl@jnu.edu.cn.
  • Wang Y; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address: wangyang0507@jnu.
  • He QY; The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science an
J Adv Res ; 51: 135-147, 2023 09.
Article em En | MEDLINE | ID: mdl-36396045
INTRODUCTION: Acquired resistance to BRAF inhibitor vemurafenib is frequently observed in metastatic colorectal cancer (CRC), and it is a thorny issue that results in treatment failure. As adaptive responses for vemurafenib treatment, a series of cellular bypasses are response for the adaptive feedback reactivation of ERK signaling, which warrant further investigation. OBJECTIVES: We identified ARF1 (ADP-ribosylation factor 1) as a novel regulator of both vemurafenib resistance and cancer metastasis, its molecular mechanism and potential inhibitor were investigated in this study. METHODS: DIA-based quantitative proteomics and RNA-seq were performed to systematic analyze the profiling of vemurafenib-resistant RKO cells (RKO-VR) and highly invasive RKO cells (RKO-I8), respectively. Co­immunoprecipitation assay was performed to detect the interaction of ARF1 and IQGAP1 (IQ-domain GTPase activating protein 1). An ELISA-based drug screen system on FDA-approved drug library was established to screen the compounds against the interaction of ARF1-IQGAP1.The biological functions of ARF1 and LY2835219 were determined by transwell, western blotting, Annexin V-FITC/PI staining and in vivo experimental metastasis assays. RESULTS: We found that ARF1 strongly interacted with IQGAP1 to activate ERK signaling in VR and I8 CRC cells. Deletion of IQGAP1 or inactivation of ARF1 (ARF-T48S) restored the invasive ability induced by ARF1. As ARF1-IQGAP1 interaction is essential for ERK activation, we screened LY2835219 as novel inhibitor of ARF1-IQGAP1 interaction, which inactivated ERK signaling and suppressed CRC metastasis and vemurafenib-resistance in vitro and in vivo with no observed side effect. Furthermore, LY2835219 in combined treatment with vemurafenib exerted significantly inhibitory effect on ARF1-mediated cancer metastasis than used independently. CONCLUSION: This study uncovers that ARF1-IQGAP1 interaction-mediated ERK signaling reactivation is critical for vemurafenib resistance and cancer metastasis, and that LY2835219 is a promising therapeutic agent for CRC both as a single agent and in combination with vemurafenib.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Fator 1 de Ribosilação do ADP Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Fator 1 de Ribosilação do ADP Idioma: En Ano de publicação: 2023 Tipo de documento: Article