Your browser doesn't support javascript.
loading
Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains.
Ly, Socheata; Didiot, Marie-Cécile; Ferguson, Chantal M; Coles, Andrew H; Miller, Rachael; Chase, Kathryn; Echeverria, Dimas; Wang, Feng; Sadri-Vakili, Ghazaleh; Aronin, Neil; Khvorova, Anastasia.
Afiliação
  • Ly S; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Didiot MC; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Ferguson CM; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Coles AH; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Miller R; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Chase K; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Echeverria D; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Wang F; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Sadri-Vakili G; Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA 02114, USA.
  • Aronin N; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
  • Khvorova A; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
Brain Commun ; 4(6): fcac248, 2022.
Article em En | MEDLINE | ID: mdl-36458209
Mutant messenger RNA (mRNA) and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease-caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene-have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington's disease. Here, we report that, in two Huntington's disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6-5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington's disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington's disease, providing in vivo evidence that Huntington's disease is a repeat expansion disease with mRNA involvement.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article