Your browser doesn't support javascript.
loading
Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration.
Cao, Yuanxiong; Tan, Jiayi; Zhao, Haoran; Deng, Ting; Hu, Yunxia; Zeng, Junhong; Li, Jiawei; Cheng, Yifan; Tang, Jiyuan; Hu, Zhiwei; Hu, Keer; Xu, Bing; Wang, Zitian; Wu, Yaojiong; Lobie, Peter E; Ma, Shaohua.
Afiliação
  • Cao Y; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Tan J; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Zhao H; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Deng T; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Hu Y; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Zeng J; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Li J; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Cheng Y; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Tang J; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Hu Z; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Hu K; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Xu B; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Wang Z; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Wu Y; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
  • Lobie PE; Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
  • Ma S; Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
Nat Commun ; 13(1): 7463, 2022 12 03.
Article em En | MEDLINE | ID: mdl-36460667
ABSTRACT
Transplantation of mesenchymal stem cells (MSCs) holds promise to repair severe traumatic injuries. However, current transplantation practices limit the potential of this technique, either by losing the viable MSCs or reducing the performance of resident MSCs. Herein, we design a "bead-jet" printer, specialized for high-throughput intra-operative formulation and printing of MSCs-laden Matrigel beads. We show that high-density encapsulation of MSCs in Matrigel beads is able to augment MSC function, increasing MSC proliferation, migration, and extracellular vesicle production, compared with low-density bead or high-density bulk encapsulation of the equivalent number of MSCs. We find that the high-density MSCs-laden beads in sparse patterns demonstrate significantly improved therapeutic performance, by regenerating skeletal muscles approaching native-like cell density with reduced fibrosis, and regenerating skin with hair follicle growth and increased dermis thickness. MSC proliferation within 1-week post-transplantation and differentiation at 3 - 4 weeks post-transplantation are suggested to contribute therapy augmentation. We expect this "bead-jet" printing system to strengthen the potential of MSC transplantation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Folículo Piloso / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Folículo Piloso / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2022 Tipo de documento: Article