Your browser doesn't support javascript.
loading
Selection of RNA-Cleaving TNA Enzymes for Cellular Mg2+ Imaging.
Gao, Mingmei; Wei, Dongying; Chen, Siqi; Qin, Bohe; Wang, Yueyao; Li, Zhe; Yu, Hanyang.
Afiliação
  • Gao M; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Wei D; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Chen S; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Qin B; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Wang Y; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Li Z; State Key Laboratory of Analytical Chemistry for Life Science Department of Biomedical Engineering College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
  • Yu H; State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
Chembiochem ; 24(4): e202200651, 2023 02 14.
Article em En | MEDLINE | ID: mdl-36513605
ABSTRACT
Catalytic DNA-based fluorescent sensors have enabled cellular imaging of metal ions such as Mg2+ . However, natural DNA is prone to nuclease-mediated degradation. Here, we report the in vitro selection of threose nucleic acid enzymes (TNAzymes) with RNA endonuclease activities. One such TNAzyme, T17-22, catalyzes a site-specific RNA cleavage reaction with a kcat of 0.017 min-1 and KM of 675 nM. A fluorescent sensor based on T17-22 responds to an increasing concentration of Mg2+ with a limit of detection at 0.35 mM. This TNAzyme-based sensor also allows cellular imaging of Mg2+ . This work presents the first proof-of-concept demonstration of using a TNA catalyst in cellular metal ion imaging.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA / DNA Catalítico Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA / DNA Catalítico Idioma: En Ano de publicação: 2023 Tipo de documento: Article