Your browser doesn't support javascript.
loading
Stable Organic Radicals Participation in Charge Transfer: A New Strategy toward Molecular Functional Materials.
Xu, Jieqiong; Li, Shengkai; Yang, Yanxia; Chen, Zhuo.
Afiliação
  • Xu J; Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China.
  • Li S; Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China.
  • Yang Y; Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China.
  • Chen Z; Molecular Science and Biomedicine Laboratory State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan, 410082, P. R. China.
Chemistry ; 29(15): e202203598, 2023 Mar 13.
Article em En | MEDLINE | ID: mdl-36527171
Charge-transfer (CT) engineering with inter-/intramolecular CT interactions by simple compositions has emerged as a universal and efficient way to construct organic functional materials. Stable organic radicals with unique physicochemical properties that cannot be realized in closed-shell molecules, have been widely demonstrated to be ideal building blocks to construct versatile organic CT materials. This concept article provides a brief overview of the advances in the design, structure and property of stable organic radicals-based CT molecular functional materials, and the strategy for the generation of these materials is also highlighted. First, radicals are introduced as open-shell donors or acceptors, with a focus on their importance and uniqueness in improving electrical, magnetic and optical properties of CT functional materials. Additionally, CT interactions in stable radical dimers and trimers are further discussed systematically. Finally, the challenges are summarized and perspectives for future development of stable organic radicals-based CT functional materials are provided.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article