Your browser doesn't support javascript.
loading
Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability.
Koo, Kyeong-Mo; Kim, Chang-Dae; Ju, Fu Nan; Kim, Huijung; Kim, Cheol-Hwi; Kim, Tae-Hyung.
Afiliação
  • Koo KM; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
  • Kim CD; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
  • Ju FN; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
  • Kim H; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
  • Kim CH; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
  • Kim TH; School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
Biosensors (Basel) ; 12(12)2022 Dec 13.
Article em En | MEDLINE | ID: mdl-36551129
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanoestruturas Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanoestruturas Idioma: En Ano de publicação: 2022 Tipo de documento: Article