Your browser doesn't support javascript.
loading
Programmable Thermo-Responsive Self-Morphing Structures Design and Performance.
Pandeya, Surya Prakash; Zou, Sheng; Roh, Byeong-Min; Xiao, Xinyi.
Afiliação
  • Pandeya SP; Mechanical and Manufacturing Engineering Department, Miami University, Oxford, OH 45056, USA.
  • Zou S; School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China.
  • Roh BM; School of Industrial and Systems Engineering, The University of Oklahoma, Norman, OK 73019, USA.
  • Xiao X; Mechanical and Manufacturing Engineering Department, Miami University, Oxford, OH 45056, USA.
Materials (Basel) ; 15(24)2022 Dec 08.
Article em En | MEDLINE | ID: mdl-36556580
ABSTRACT
Additive manufacturing (AM), also known as 3D printing, was introduced to design complicated structures/geometries that overcome the manufacturability limitations of traditional manufacturing processes. However, like any other manufacturing technique, AM also has its limitations, such as the need of support structures for overhangs, long build time etc. To overcome these limitations of 3D printing, 4D printing was introduced, which utilizes smart materials and processes to create shapeshifting structures with the external stimuli, such as temperature, humidity, magnetism, etc. The state-of-the-art 4D printing technology focuses on the "form" of the 4D prints through the multi-material variability. However, the quantitative morphing analysis is largely absent in the existing literature on 4D printing. In this research, the inherited material anisotropic behaviors from the AM processes are utilized to drive the morphing behaviors. In addition, the quantitative morphing analysis is performed for designing and controlling the shapeshifting. A material-process-performance 4D printing prediction framework has been developed through a novel dual-way multi-dimensional machine learning model. The morphing evaluation metrics, bending angle and curvature, are obtained and archived at 99% and 93.5% R2, respectively. Based on the proposed method, the material and production time consumption can be reduced by around 65-90%, which justifies that the proposed method can re-imagine the digital-physical production cycle.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article