Optimization of Parameters for ROI Data Compression for Nontargeted Analyses Using LC-HRMS.
Anal Chem
; 95(2): 1513-1521, 2023 01 17.
Article
em En
| MEDLINE
| ID: mdl-36563309
Nontargeted analyses of low-concentration analytes in the information-rich data collected by liquid chromatography with high-resolution mass spectrometry detection can be challenging to accomplish in an efficient and comprehensive manner. The aim of this study is to demonstrate a workflow involving targeted parameter optimization for entire chromatograms using region of interest (ROI) data compression uncoupled from a subsequent tile-based Fisher ratio (F-ratio) analysis, a supervised discovery-based method, for the discovery of low-concentration analytes. Soil samples spiked with 18 pesticides at nominal concentrations ranging from 0.1 to 50 ppb for a total of six sample classes served as challenging samples to demonstrate the overall workflow. Optimization of two parameters proved to be the most critical for ROI data compression: the signal threshold parameter and the admissible mass deviation parameter. The parameter optimization method workflow we introduce is based upon spiking known analytes into a representative sample and determining the number of detectable spikes and the Δppm for various combinations of the signal threshold and admissible mass deviation, where Δppm is the absolute value of the difference between the theoretical m/z and the ROI m/z. Once optimal parameters are determined providing the lowest average Δppm and the greatest number of detectable analytes, the optimized parameters can be utilized for the intended analysis. Herein, tile-based F-ratio analysis was performed on the ROI compressed data of all spiked soil samples first by applying ROI parameters recommended in the literature, referred to herein as the initial ROI parameters, and finally by the combination of the two optimized parameters. Using the initial ROI parameters, three pesticides were discovered, whereas all 18 spiked pesticides were discovered by optimizing both ROI parameters.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Praguicidas
/
Compressão de Dados
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article