Your browser doesn't support javascript.
loading
Computational estimation of sediment symbiotic bacterial structures of seagrasses overgrowing downstream of onshore aquaculture.
Miyamoto, Hirokuni; Kawachi, Nobuhiro; Kurotani, Atsushi; Moriya, Shigeharu; Suda, Wataru; Suzuki, Kenta; Matsuura, Makiko; Tsuji, Naoko; Nakaguma, Teruno; Ishii, Chitose; Tsuboi, Arisa; Shindo, Chie; Kato, Tamotsu; Udagawa, Motoaki; Satoh, Takashi; Wada, Satoshi; Masuya, Hiroshi; Miyamoto, Hisashi; Ohno, Hiroshi; Kikuchi, Jun.
Afiliação
  • Miyamoto H; Graduate School of Horticulture, Chiba University: Matsudo, Chiba, 271-8501, Japan; RIKEN Center for Integrated Medical Science, Yokohama, Kanagawa, 230-0045, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd.: Chiba, Chiba, 263-8522, Japan; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan. Electro
  • Kawachi N; Kawachi Suisan Ltd.: Saiki, Oita, 876-2302, Japan.
  • Kurotani A; Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.
  • Moriya S; RIKEN, Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan.
  • Suda W; RIKEN Center for Integrated Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
  • Suzuki K; RIKEN, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
  • Matsuura M; Graduate School of Horticulture, Chiba University: Matsudo, Chiba, 271-8501, Japan; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan.
  • Tsuji N; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan.
  • Nakaguma T; Graduate School of Horticulture, Chiba University: Matsudo, Chiba, 271-8501, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd.: Chiba, Chiba, 263-8522, Japan; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan.
  • Ishii C; RIKEN Center for Integrated Medical Science, Yokohama, Kanagawa, 230-0045, Japan; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan.
  • Tsuboi A; Japan Eco-science (Nikkan Kagaku) Co. Ltd.: Chiba, Chiba, 263-8522, Japan.
  • Shindo C; Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.
  • Kato T; RIKEN Center for Integrated Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
  • Udagawa M; Keiyo Gas Energy Solution Co. Ltd.: Ichikawa, Chiba, 272-0033, Japan.
  • Satoh T; Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, 252-0329, Japan.
  • Wada S; RIKEN, Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan.
  • Masuya H; RIKEN, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
  • Miyamoto H; Sermas Co., Ltd.: Ichikawa, Chiba, 272-0033, Japan; Miroku Co.Ltd.: Kitsuki, Oita, 873-0021, Japan.
  • Ohno H; RIKEN Center for Integrated Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
  • Kikuchi J; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan. Electronic address: jun.kikuchi@riken.jp.
Environ Res ; 219: 115130, 2023 02 15.
Article em En | MEDLINE | ID: mdl-36563976
Coastal seagrass meadows are essential in blue carbon and aquatic ecosystem services. However, this ecosystem has suffered severe eutrophication and destruction due to the expansion of aquaculture. Therefore, methods for the flourishing of seagrass are still being explored. Here, data from 49 public coastal surveys on the distribution of seagrass and seaweed around the onshore aquaculture facilities are revalidated, and an exceptional area where the seagrass Zostera marina thrives was found near the shore downstream of the onshore aquaculture facility. To evaluate the characteristics of the sediment for growing seagrass, physicochemical properties and bacterial ecological evaluations of the sediment were conducted. Evaluation of chemical properties in seagrass sediments confirmed a significant increase in total carbon and a decrease in zinc content. Association analysis and linear discriminant analysis refined bacterial candidates specified in seagrass overgrown- and nonovergrown-sediment. Energy landscape analysis indicated that the symbiotic bacterial groups of seagrass sediment were strongly affected by the distance close to the seagrass-growing aquaculture facility despite their bacterial population appearing to fluctuate seasonally. The bacterial population there showed an apparent decrease in the pathogen candidates belonging to the order Flavobacteriales. Moreover, structure equation modeling and a linear non-Gaussian acyclic model based on the machine learning data estimated an optimal sediment symbiotic bacterial group candidate for seagrass growth as follows: the Lachnospiraceae and Ruminococcaceae families as gut-inhabitant bacteria, Rhodobacteraceae as photosynthetic bacteria, and Desulfobulbaceae as cable bacteria modulating oxygen or nitrate reduction and oxidation of sulfide. These observations confer a novel perspective on the sediment symbiotic bacterial structures critical for blue carbon and low-pathogenic marine ecosystems in aquaculture.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Zosteraceae Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Zosteraceae Idioma: En Ano de publicação: 2023 Tipo de documento: Article