Your browser doesn't support javascript.
loading
Design, Synthesis, and In Vitro and In Silico Approaches of Novel Indanone Derivatives as Multifunctional Anti-Alzheimer Agents.
Saglik, Begüm Nurpelin; Levent, Serkan; Osmaniye, Derya; Evren, Asaf Evrim; Karaduman, Abdullah Burak; Özkay, Yusuf; Kaplancikli, Zafer Asim.
Afiliação
  • Saglik BN; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Levent S; Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Osmaniye D; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Evren AE; Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Karaduman AB; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Özkay Y; Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
  • Kaplancikli ZA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
ACS Omega ; 7(50): 47378-47404, 2022 Dec 20.
Article em En | MEDLINE | ID: mdl-36570177
ABSTRACT
Alzheimer's disease (AD) is a neurological, progressive illness that typically affects the elderly and is clinically distinguished by memory and cognitive decline. Due to a number of factors, including the absence of a radical treatment, an increase in the patient population over time, the high cost of care and treatment, and a significant decline in patients' quality of life, the importance of this disease has increased. These factors have all prompted increased interest among researchers in this field. The chemical structure of the donepezil molecule, the most popular and effective treatment response for AD, served as the basis for the design and synthesis of 42 novel indan-1-one derivatives in this study. Using IR, 1H, and 13C NMR as well as mass spectroscopic techniques, the compounds' structures were identified. Research on the compounds' antioxidant activities, cholinesterase (ChE) enzyme inhibition, monoamine oxidase (MAO) A and B inhibitory activities, ß-amyloid plaque inhibition, and cytotoxicity impact was carried out. Inhibition of ß-amyloid plaque aggregation; effective inhibition of AChE, BChE, and MAO-B enzymes; and significant antioxidant activity were all demonstrated by compounds D28-D30 and D37-D39. Because of their various actions, it was hypothesized that the related compounds may be useful in treating AD symptoms as well as providing palliative care.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article