Your browser doesn't support javascript.
loading
Basic characteristics of magnesium-coal slag solid waste backfill material: Part I. preliminary study on flow, mechanics, hydration and leaching characteristics.
Yang, Pan; Liu, Lang; Suo, Yonglu; Qu, Huisheng; Xie, Geng; Zhang, Caixin; Deng, Shunchun; Lv, Yin.
Afiliação
  • Yang P; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: YangPan@xust.edu.cn.
  • Liu L; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an, 710054, China. Electronic address: liulang@xust.edu.cn.
  • Suo Y; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an, 710054, China. Electronic address: suoyl99@163.com.
  • Qu H; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: xkdqhs@163.com.
  • Xie G; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: xiegeng0310@163.com.
  • Zhang C; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: zhangcaixin@stu.xust.edu.cn.
  • Deng S; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: Dengshunchun@stu.xust.edu.cn.
  • Lv Y; Energy School, Xi'an University of Science and Technology, Xi'an, 710054, China. Electronic address: 21203226082@stu.xust.edu.cn.
J Environ Manage ; 329: 117016, 2023 Mar 01.
Article em En | MEDLINE | ID: mdl-36586328
ABSTRACT
The environmental damage caused by surface subsidence and coal-based solid waste (CBSW) is a common problem in the process of coal mining. Backfill mining can control the mining-induced subsidence and solve the problem of bulk solid waste storage. In the present work, a magnesium-coal slag solid waste backfill material (MCB) with modified magnesium slag (MS) as binder and CBSW (fly ash (FA), flue gas desulfurization gypsum (FDG) and coal gasification slag (CGS)) as supplementary cementitious material/aggregate was proposed to meet the needs of coal mining in Northern Shaanxi, China, to realize the comprehensive treatment of goaf and CBSW. The results show that (1) The rheological curve of the fresh MCB slurry is highly consistent with the Herschel-Bulkley (H-B) model, and its fluidity meets the basic requirements of mine backfill pumping. With the addition of FDG and MS, the yield stress, apparent viscosity and thixotropy of MCB slurry increase, while the pseudoplastic index and slump decrease. (2) The strength of MCB develops slowly in the early stage (0∼14 days) and increases rapidly in the later stage (14∼90 days). Except for the ratio of M20F1 and FDG = 0%, the strength of samples at other ratios (at 28 days) is between 6.06∼11.68 MPa, which meets the strength requirement of 6 MPa for coal mine backfill. The addition of MS and appropriate amount of FDG is beneficial to the development of strength. In contrast, MS exhibits a significant improvement in early strength, and FDG has a significant improvement in late-age strength. (3) Corresponding to the compressive strength, the hydration products C-S(A)-H and AFt of MCB are less in the early stage and greatly increased in the later stage. The active substance in FA/CGS will undergo pozzolanic reaction with the MS hydration product CH. The addition of FDG and MS can promote the reaction and increase the amount of hydration product, but in contrast, the promotion effect of FDG is more significant. (4) The amount of heavy metal leaching of MCB meets the requirements of national standards. The hardened MCB has a solidification/stabilization effect on heavy metal elements, which can significantly reduce the amount of heavy metal leaching. The results imply that MCB is a safe, reliable, and eco-friendly solid waste backfill material, and its application is conducive to the coordinated development of coal resource mining and environmental protection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Minas de Carvão / Metais Pesados Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Minas de Carvão / Metais Pesados Idioma: En Ano de publicação: 2023 Tipo de documento: Article