Your browser doesn't support javascript.
loading
Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning.
Rodríguez-Temporal, David; Herrera, Laura; Alcaide, Fernando; Domingo, Diego; Héry-Arnaud, Genevieve; van Ingen, Jakko; Van den Bossche, An; Ingebretsen, André; Beauruelle, Clémence; Terschlüsen, Eva; Boarbi, Samira; Vila, Neus; Arroyo, Manuel J; Méndez, Gema; Muñoz, Patricia; Mancera, Luis; Ruiz-Serrano, María Jesús; Rodríguez-Sánchez, Belén.
Afiliação
  • Rodríguez-Temporal D; Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
  • Herrera L; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
  • Alcaide F; Servicio de Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
  • Domingo D; Servei de Microbiologia, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain.
  • Héry-Arnaud G; Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
  • van Ingen J; Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain.
  • Van den Bossche A; Unit of Bacteriology, Brest University Hospital, Brest, France.
  • Ingebretsen A; Brest University, INSERM, UMR 1078, GGB, Microbiota Axis, Brest, France.
  • Beauruelle C; Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
  • Terschlüsen E; Division of Human Bacterial Diseases, Sciensano, Brussels, Belgium.
  • Boarbi S; Oslo University Hospital, Oslo, Norway.
  • Vila N; Unit of Bacteriology, Brest University Hospital, Brest, France.
  • Arroyo MJ; Brest University, INSERM, UMR 1078, GGB, Microbiota Axis, Brest, France.
  • Méndez G; Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.
  • Muñoz P; Division of Human Bacterial Diseases, Sciensano, Brussels, Belgium.
  • Mancera L; Servei de Microbiologia, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Spain.
  • Ruiz-Serrano MJ; Clover Bioanalytical Software, Granada, Spain.
  • Rodríguez-Sánchez B; Clover Bioanalytical Software, Granada, Spain.
J Clin Microbiol ; 61(1): e0111022, 2023 01 26.
Article em En | MEDLINE | ID: mdl-36602341
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mycobacterium abscessus / Mycobacterium / Infecções por Mycobacterium não Tuberculosas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mycobacterium abscessus / Mycobacterium / Infecções por Mycobacterium não Tuberculosas Idioma: En Ano de publicação: 2023 Tipo de documento: Article