Your browser doesn't support javascript.
loading
MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation.
Mu, Xiaotong; Chen, Lihua; Qu, Nannan; Yu, Jiale; Jiang, Xiaoqian; Xiao, Chaohu; Luo, Xingping; Hasi, Qimeige.
Afiliação
  • Mu X; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Chen L; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Qu N; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Yu J; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Jiang X; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Xiao C; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Luo X; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
  • Hasi Q; College of Chemical Engineering, Experimental Teaching Department, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Northwest Xincun 1, Lanzhou 7300
J Colloid Interface Sci ; 636: 291-304, 2023 Apr 15.
Article em En | MEDLINE | ID: mdl-36638569
ABSTRACT
The application of photothermal materials in seawater desalination, wastewater treatment have been widely studied, however, there are relatively few studies that combine photothermal effects and solar-driven photocatalysis and exhibit efficient solar-driven water evaporation performance and excellent photocatalytic ability. Form the perspective of practical application, it is of great significance to combine photothermal effect with solar-driven photocatalysis to develop environment-friendly evaporator with low cost, simple preparation process and ability of seawater desalination, wastewater treatment and photodegradation of organic dyes. In this paper, a novel multifunctional MXene/polypyrrole (PPy) coated melamine foam (MF) named as MF-MXene/PPy was successfully prepared by simple impregnation and in-situ polymerization. The MF-MXene/PPy has rich porosity (89.13 %), abundant water molecule transport channels, excellent light absorption capacity (about 94 %), low thermal conductivity (0.1047 W m-1 K-1), and exhibits excellent performance in solar desalination, wastewater purification and photodegradation of organic dyes. Under 1 kW m-2 illuminate, the solar energy conversion rate and efficiency of MF-MXene/PPy reaches up to 1.5174 kg m-2h-1 and 91.24 %. Moreover, due to the regular pore size of MF-MXene/PPy, good salinity tolerance was shown even after continuous evaporation in 20 wt% NaCl for 8 h. After continuous evaporation in 70 mL of 20 wt% NaCl for 8 h, the amount of salt collected could reach 0.2 g. In addition, MF-MXene/PPy also possessed excellent visible light degradation ability for organic dyes, and the degradation rate of methylene blue (MB), rhodamine B (RHB) and methyl orange (MO) were 92.38 %, 88.92 % and 91.75 %, respectively. As a fundamental research, this research will open a novel way to the development of new evaporator.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article