Your browser doesn't support javascript.
loading
Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation.
Starr, Caleb A; Nair, Smita; Huang, Sheng-Yuan; Hagan, Michael F; Jacobson, Stephen C; Zlotnick, Adam.
Afiliação
  • Starr CA; Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States.
  • Nair S; Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States.
  • Huang SY; Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
  • Hagan MF; Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States.
  • Jacobson SC; Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
  • Zlotnick A; Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States.
J Am Chem Soc ; 145(4): 2322-2331, 2023 02 01.
Article em En | MEDLINE | ID: mdl-36651799
For a virus-like particle (VLP) to serve as a delivery platform, the VLP must be able to release its cargo in response to a trigger. Here, we use a chemical biology approach to destabilize a self-assembling capsid for a subsequent triggered disassembly. We redesigned the dimeric hepatitis B virus (HBV) capsid protein (Cp) with two differentially addressable cysteines, C150 for reversibly crosslinking the capsid and C124 to react with a destabilizing moiety. The resulting construct, Cp150-V124C, assembles into icosahedral, 120-dimer VLPs that spontaneously crosslink via the C-terminal C150, leaving C124 buried at a dimer-dimer interface. The VLP is driven into a metastable state when C124 is reacted with the bulky fluorophore, maleimidyl BoDIPY-FL. The resulting VLP is stable until exposed to modest, physiologically relevant concentrations of reducing agent. We observe dissociation with FRET relaxation of polarization, size exclusion chromatography, and resistive-pulse sensing. Dissociation is slow, minutes to hours, with a characteristic lag phase. Mathematical modeling based on the presence of a nucleation step predicts disassembly dynamics that are consistent with experimental observations. VLPs transfected into hepatoma cells show similar dissociation behavior. These results suggest a generalizable strategy for designing a VLP that can release its contents in an environmentally responsive reaction.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Capsídeo / Vacinas de Partículas Semelhantes a Vírus Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Capsídeo / Vacinas de Partículas Semelhantes a Vírus Idioma: En Ano de publicação: 2023 Tipo de documento: Article